MUON ANGULAR DISTRIBUTIONS

RESULTS FROM THE MEGA-MINI DETECTOR OPERATING AT DAB

L. N. Kalousis
Virginia Tech
November 2013

INTRODUCTION

- This is meant be to a rather brief but dense talk focusing on the muon angular distribution analysis with mega-mini.
 - An appetizer showing the capabilities of our detector
- More details on the mega-mini detector can be found in Doc-DB-2651 and -2761 and the ORC documents of Doc-DB-3003.
- The results included in this presentation are based on an 8 h "baseline" run sequence taken at DAB.
 - Results on the absolute muon flux reported in Doc-DB-3007
- Here, the extraction of the zenith and azimuthal muon angle distributions will be presented.

MUON TRACK RECONSTRUCTION

- Mega-mini is equipped with four bilayer modules
- Two modules in both X and Y directions separated in Z
 - These features allow some muon tracking capabilities ...

MUON TRACK RECONSTRUCTION

- A crossing muon activates eight bars of the detector
- This leaves us with the knowledge of 8 coordinates in X and Y
 - All the Z coordinates are, of course, known

TRACK RECONSTRUCTION ALGORITHM

- The scintillator bars have dimensions of 20×5×1 cm
 - This means that the pointing resolution is not going to be great!
- Reject events with more that 8 hits:

TRACK RECONSTRUCTION ALGORITHM

- The scintillator bars have dimensions of 20×5×1 cm
 - This means that the pointing resolution is not going to be great!
- Reject events with more that 8 hits:

TRACK RECONSTRUCTION ALGORITHM

- The scintillator bars have dimensions of 20×5×1 cm
 - This means that the pointing resolution is not going to be great!
- Reject events with more that 8 hits
 - Hold only those events with exactly 8 hits
 - Four pairs of (X_i, Z_i) and (Y_i, Z_i)
- RECONSTRUCTION ALGORITHM
 - Approximate muon tracks with 3-D straight lines
 - Track parameterization : R(Z ; X_{in}, Y_{in}, X_{out}, Y_{out})
 - Minimization of a common "two-fold" χ²

$$\chi^{2} = \sum_{i=0-3}^{x \text{ hits}} \frac{\left(X_{i} - R_{x}(Z_{i}; X_{in}, Y_{in}, X_{out}, Y_{out})\right)^{2}}{2.5^{2} + (\tan\theta\cos\phi \ 0.5)^{2}} + \sum_{i=0-3}^{y \text{ hits}} \frac{\left(Y_{i} - R_{y}(Z_{i}; X_{in}, Y_{in}, X_{out}, Y_{out})\right)^{2}}{2.5^{2} + (\tan\theta\sin\phi \ 0.5)^{2}}$$

Best fit returns: X_{in}, Y_{in}, X_{out}, Y_{out}

DETECTOR SIMULATION

- We have develop a rather simplistic Monte-Carlo to propagate muons through our detector.
 - It seems to be more than adequate since a detailed Geant4 MC is outside of the scope of this study
 - Difficult to validate/tune a more complicated MC
 - Most of the detector features stem just from geometry
- A C++/ROOT code implementing the mega-mini geometry
 - 3-D cells in the exact orientation
 - Calculate the X Y hits when a cell is crossed by a track
- Then we can reconstruct the muon track using previous ideas
 - Both TRUE and RECO, information at hand

GENERATED EVENTS

x bi-layers

y bi-layers

Solid line: MC true info

Dashed line: Reconstructed track

GENERATED EVENTS

x bi-layers

y bi-layers

Solid line: MC true info

Dashed line: Reconstructed track

EFFECTIVE AREA

EFFECTIVE AREA

RESOLUTION IN O

- Pointing resolution is poor but,
- ... still better than nothing!

RESOLUTION IN Φ

- Vertical and near-vertical tracks are badly reconstructed in φ,
 - Small "trace" in the detector
 - Ambiguity in φ when θ≈0°
- A software cut of $\theta > 35^{\circ}$ is required to improve the resolution

RESOLUTION IN Φ

- After a θ_{RECO} >35° cut the resolution improves significantly
- Still not excellent though ...
 - Azimuthal distribution is driven by the big width of the strips, 5 cm

SURFACE RESULTS

Results from a "baseline" run taken at VT

- Five bins of 15° in θ and bins of 10° in φ
- Geometry and reconstruction "smear" things out but,
- Data and MC are in excellent agreement!

RESULTS IN DAB

- Systematical error distributed evenly on all bins ...
- Distributions at DAB look good
 - Close like these on surface; small differences due to the 3 floor overburden in the one side

FUTURE WORK

- The mega-mini tracking algorithms are in a very good shape!
- The analysis of those baseline data taken at DAB show the capabilities of mega-mini extracting both muon rate and angular distributions.
- In the meantime, and in another universe ... many data sets have been taken at LArTF (ground floor, pit)
- Our main priority is to finalize and complete the analysis of these runs

FUTURE WORK

- This will serve several purposes :
 - Give us the rate and angular distributions of muons in LArTF
 (In two different positions in LArTF)
 - Know the absolute ratio of the rate on the surface and pit
 - Use this data to validate CRY (talk given on previous SG meeting)
- In case of disagreement with CRY many paths can be taken :
 - Contact the guys from LLNL; wait for an updated version
 - Investigate whether there is a problem with the muon transport code or the proper implementation of the detector surroundings
 - Try another cosmic ray shower software

THANK YOU

kalousis@vt.edu

SPARES

THETA TRUE

PHI TRUE

WITHOUT A THETA CUT

AFTER THE THETA CUT

